Dynamic Content Placement for Mobile Content
Distribution Networks

Wagner M. Aioffi, Geraldo R. Mateus, Jussara M. Almeida, and
Raquel C. Melo

Department of Computer Science
Federal University of Minas Gerais - Brazil
{aioffi,mateus, jussara,raquelcm}@dcc.ufmg.br

Abstract. As wireless networks increase in popularity, the development
of efficient content distribution techniques to meet the growing and
constantly changing client demand becomes a necessity. Previous con-
tent distribution network proposals, targeting mainly wired networks,
are not adequate to handle the high temporal and spatial variability
in client demand caused by user mobility. This paper proposes and
analyzes a wireless dynamic content distribution network framework
that replicates content in response to changes in client demand in order
to reduce the total traffic over the network backbone. We propose a
mathematical programming model to determine the offline optimal
solution as well as an online algorithm based on demand forecasting.
Using a previously developed mobility simulator, we show our new
online algorithm outperforms the traditional centralized and distributed
static placement approaches, reducing the total traffic over the network
backbone in up to 78%, compared to the best previous approach
analyzed.

Keywords: Dynamic content placement, mobile networks, demand fore-
casting.

1 Introduction

As the number of wireless network users increases and with the advent of high
bandwidth third-generation mobile networks, it becomes necessary to develop
new system design techniques to meet the increasing demand. Next generation
wireless telecommunication systems should be designed as a high-capacity sys-
tem, able to cope with the envisaged overwhelming traffic volume.

A Content Distribution Network, or simply CDN, replicates popular content
at a number of servers, placed closer to high demand sites, in order to reduce
network bandwidth requirements and latency observed by the end user. CDNs
have been shown to be effective for managing content distribution to a large
number of users in wired networks. In those cases, the assumption of a static
client demand distribution is usually made [BIT3IZ10/15].

In wireless networks, client demand is expected to vary significantly not only
over time but also over space, due to user mobility. For example, a city downtown
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area may have a higher demand for business content during working hours.
However, one might expect the demand to drop significantly as people return
to their homes after work. Thus, the design of a content distribution system for
wireless networks must rely on dynamic replica placement strategies in order to
cope with the possibly high variability of client demand.

To the best of our knowledge, content replication for variable client demand
has only been studied recently. In [3lB], the authors address the problem for
specific network topologies. A heuristic for dynamic replication of Internet ap-
plications in more general topologies was recently proposed in [14]. Optimiza-
tion models targeting system availability [1§] and for providing lower bounds on
the cost-effectiveness of different replica placement heuristics [§] have also been
proposed. Nevertheless, these studies propose and evaluate solutions for wired
networks.

This work proposes and analyzes a Wireless Dynamic Content Distribution
Network Model (WDCDNM). In WDCDNM, the CDN should be dynamically
reconfigured in response to, possibly high, temporal and spatial variations in
client demand with the goal of reducing total traffic over the network backbone.
Reconfiguring the CDN implies that new replicas of currently popular objects
should be added to the network. Similarly, previously created replicas of objects
that have just become unpopular should be removed from the network.

We formulate a mathematical programming model, based on well-known
combinatorial optimization models, which represents the offline optimal version
of the problem. We also propose an online heuristic algorithm, which uses de-
mand forecasting to reconfigure the network for future demand, to approximate
the optimal solution given by the mathematical model. Since the offline model
requires a priori knowledge of all future demand, it cannot be implemented in a
real system. However, it offers an ideal lower-bound that can be used to analyze
the competitive efficiency of the online algorithm [I].

An extensive performance analysis of our online algorithm, using a previously
developed mobility simulator [IT], showed that it produces solutions with a total
network traffic that is only up to four times the offline optimal. Furthermore,
compared to existing centralized and distributed static content placement ap-
proaches, our heuristic saves up to 78% of network traffic over the best static
approach analyzed.

This paper makes the following contributions:

— An offline optimization model that provides a lower bound for the total traffic
over the network backbone for Wireless Content Distribution Networks. The
offline model can be implement total and partial content replication.

— A novel and efficient online algorithm for dynamic content placement in
wireless networks that reduces network traffic in up to 78%, compared to
static content placement.

The remaining of this paper is organized as follows. Section 2 discusses related
work on CDNs. Section B describes the mathematical programming model and
the online heuristic algorithm. Section [l reports a performance evaluation of our
solutions. Conclusions and future work are offered in Section
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2 Content Distribution Networks

A Content Distribution Network (CDN) is a system that allocates replicas of
its contents over servers geographically scattered, placed, typically, close to high
demand sites in order to reduce client latency and network bandwidth require-
ments. Content placement is a key problem in the design of efficient CDNs.
Determining the number and location of replicas that should be created for a
certain content is a non-trivial problem that depends on the solution of a com-
plex tradeoff. Associated with each new replica is a replication cost which is
proportional to the bandwidth required for transferring a copy of the content
from the closest server where it is currently stored to the new replica server.
There is also an extra cost associated with maintaining the local replica up-to-
date. On the other hand, a new replica contributes to reducing the bandwidth
required for serving client requests and, thus, reducing client latency.

The content placement problem, previously shown to be NP-Complete [4],
has been studied mostly for static client demands. Optimal solutions for specific
topologies [9I10] and heuristics for more general topologies [6/13/15] have been
proposed. Content placement for dynamic client demand has been studied only
very recently [3[58/18/14]. In [3], the authors address the problem with the goal
of minimizing the number of replicas deployed in a tree topology while meeting
client QoS and server capacity constraints. Dynamic content placement heuristics
for replicating content inside a cluster-based cache are proposed in [5]. In [§],
the authors propose an offline integer programming model for choosing the most
cost-effective heuristic for a given system, workload and performance goal. By
using specific constraints, the proposed model offers lower bounds for the cost
associated with a number of different heuristics. A replication cost optimization
models targeting system availability is proposed and formalized in [I8]. Finally,
Rabinovich et al [T4] study the problem in the context of Internet application
replication in general topologies. They propose a heuristic, called ACDN, for
dynamic replica placement based on the observed past demand that aims at
minimizing the network bandwidth requirements. Like the solutions proposed in
[BBIRITR], the ACDN algorithm was proposed and evaluated for wired networks.

CDN design solutions targeting, specifically, wireless networks receive little
attention so far. Previous work addresses mainly the server selection problem
[I6/17]. In [I6] the authors address the server selection problem in a streaming
media mobile CDN with servers arranged hierarchically, with the goal of reducing
the number of mobile client handoffs. In [I7], the authors propose a mobile
streaming media CDN controlled by SMIL (Synchronized Multimedia Integrated
Language) with the goals of improving streaming media quality, supporting client
mobility and efficiently utilizing network resources.

This paper addresses the content placement problem in the specific context
of wireless networks, where client demand may vary significantly over time and
space. It proposes and evaluates not only an online dynamic content placement
heuristic but also an offline optimal solution. Unlike the optimization models
proposed in [§] and in [T8], which target latency and system availability in wired
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networks, respectively, our offline optimal solution aims at minimizing total traf-
fic over the backbone of wireless content distribution networks.

3 Wireless Dynamic Content Distribution Networks

This section defines our Wireless Dynamic Content Distribution Network Model
(WDCDNM), a framework for managing content replication and placement in
a wireless network aiming at reducing the total traffic in the network backbone.
It also presents the mathematical programming model, which provides an offline
optimal solution, and the online heuristic algorithm.

WDCDNM uses the general term “content” to represent a collection of ob-
jects (for instance, the collection of objects of a given site). Each content is
stored in at least one server in the system, which is referred to as its origin
server. Mobile users, or simply clients, request individual objects of a content. A
request to a certain object is always sent to the currently closest server, due to
server wireless coverage limitation. This server may or may not have a replica of
the requested content. If it has, the request is served locally, incurring no traffic
over the network backbone. Otherwise, it forwards the request to the closest
server that has the content replica, and relays the response to the client. In this
case, the indirect request service generates traffic over the network backbone be-
tween the two servers involved in the operation. Similarly, replication and replica
maintenance operations also generate traffic over the backbone. A maintenance
operation occurs whenever a content is modified in its origin server.

WDCDNM characterizes each content ¢ by three size parameters: number of
bytes transmitted during a replication (sr¢), number of bytes transmitted when
a request for an object of the content is indirectly served (sm¢), and number
of bytes transmitted during a maintenance operation. Note that WDCDNM as-
sumes all objects within the same content have equal sizes, although different
contents may have different total sizes. Extensions for allowing heterogeneous
object sizes within the same content are straightforward. Partial and total con-
tent replication can be implemented in the WDCDNM framework by simply
setting sr® and si¢ appropriately. In case of partial replication, indirect request
service and replication are performed on a per-object basis and, thus, for a given
content ¢, sr¢ = si¢. Otherwise, replication is performed for the whole content at
once. Thus, sr¢ > si®. The value assigned to sm® depends on whether a main-
tenance operation is performed by transmitting a new copy of the content or
simply “patches” with the changes to be performed on the old replica.

In response to the current spatial distribution of client demand (i.e., number
of client requests per unit of time) for objects of different contents, WDCDNM
performs content replication and/or removal of previously created replicas in the
servers, with the goal of minimizing the total traffic over the network backbone.
This traffic is calculated as the sum of the total traffic generated by partial/total
content replication operations, the total traffic generated by replica maintenance
operations and the total traffic generated by indirected responses to client re-
quests. Each traffic component is estimated as the product of the number of bytes
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transferred in each operation (given by sr¢, si¢ and sm¢), the “distance” (i.e.,
number of hops, geographical distance, etc) between the two servers involved in
the operation and the number of operations performed.

The decision of adding a new content replica to a server or removing an ex-
isting one is based on the local demand for the content, and should be revisited
periodically to absorb spatial and temporal changes in client demand. The fol-
lowing sections describe our two implementations of the WDCDNM framework:
the offline optimal solution and the online (heuristic) algorithm.

3.1 Offline Optimal Solution

The offline optimal solution of WDCDNM is formulated as a mathematical pro-
gramming model. The model is based on the well-known Uncapacitated Location
Problem [12], a classical NP-Complete combinatorial optimization problem, ex-
tended to represent the spatial and temporal variations in client demand caused
by user mobility. The following notation is used in the model formulation:

C: Set of contents available in the network;
T Set of reconfiguration periods;
S: Set of servers;
dist; j: Distance between servers i € S and j € S;
0 Origin server of content ¢ € C}
dt¢: Total demand, expressed as the number of requests sent by local clients
to server ¢ € S for objects of content ¢ € C during period t € T
m®¢: Flag that indicates whether content ¢ € C is modified at its origin server
during period t € T ;
big;: Traffic generated over the backbone if server j € S indirectly serves a
request, originally sent to server i € S, to an object of content ¢ € C;
br;: Traffic generated over the backbone if server i € S (totally or partially)
replicates content ¢ € C' from server j € S;
Traffic generated over the backbone if server ¢ € S has to update a local
replica of content ¢ € C;
yfj Binary variable that indicates whether server i € S replicates content
c € C from server j € S during period t € T}
Binary variable that indicates whether server ¢ € S has the content ¢ € C'
during period t € T}
xfjc Number of times that server i € S forwards a request for an object of
content ¢ € C to server j € S during period ¢t € T'.

C.
bms:

tc.
a;":

The problem is then formulated as follows:

min Z Z Z Z zi5his; +

teT seS iel jel

Z Z Z Z yfjs'bricj + Z Z Z alem'bms

teT seS i€l jel teT s€S iel
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Subject to:

bis; = si€ x dist;, Vee C,Vie S,Vje S 1)
bri; = sr x dist;,; Vee C,Vie S,Vje S (2)
bmi = sm® X distioe Vee C,Vie S (3)
al® > 1, VteT,VceC (4)
€S
ST al v dlalt = dif, Vt € T,Ve€ C,Vie S (5)
jES
zfs < di° - alf, VteT,Yce C,Vic S,VjeS (6)
alVe —alt <>yl VteT,Yee C,Vie S (7)
jES
yi5 < af, Vte T\NceC,Vie S,VjeS (8)
x>0, vteT,Vee C,Vie S,Vje S 9)
yi5 € {0, 1}, Vte T,Vee C,Vic S,¥je S (10)
al® € {0,1}, VteT,Vee C,Yie S (11)

The objective function minimizes the total traffic over the network backbone.
The first set of summations represents the total traffic generated bye request
indirect attendance, the second set of summations represents the total traffic
generated by replication operations and, finally, the last set of summations rep-
resents the total traffic generated by replica maintenance operations.

Constraints ([I)), (), and (B) computes the traffic generated by each indirect
request service, replication and maintenance operation, respectively. The set of
constraints (@) ensures that there is at least one server for each content on the
network. The set of constraints ([B]) ensures that client requests are served, either
locally or by remote servers. The set of constraints (G]) ensures that a server
only forwards a request to a server containing the requested object. Constraints
() guarantee that each replication does result in a new content replica. The set
of constraints (§) ensures that the content being copied during a replication is
stored in the originating server. Constraints (@), (I0) and (II)) ensure that vari-
ables xfjc are non-negative and variables yfj and a§§ are binary, respectively. For
simplicity, the model does not impose constraints on server storage requirements.
However, it could be easily extended to include such constraints.

The model defined above implements the offline version of our WDCDNM
and can be solved to optimality. Unlike previous static content placement op-
timization models [9I0l13], it uses the set of parameters di° to model demand
variation over time and space, since the spatial location of each mobile user at a
given time determines the server to which its requests are sent. Because it needs
a priori knowledge of all future demand, the model can not be applied to a real
system. Nevertheless, it provides a lower-bound on the total network traffic gen-
erated for efficient content placement in mobile networks and thus, can be used
to assess the efficiency of our online approximate algorithm, described next.
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3.2 Online Algorithm

In order to solve large and practical problems, we propose and evaluate a new
online heuristic algorithm for dynamic placement of content in wireless CDNs.
The algorithm uses a statistical forecasting method, called Double Exponential
Smoothing [2], to predict future demand for different contents on each server,
and uses the predictions to decide whether to add a new content replica or to
remove an existing one.

The Double Exponential Smoothing algorithm works as follows. Let y; be
the actual demand, in number of client requests, observed during period t at a
server. Let a be a smoothing factor. The method calculates the prediction §;y -,
made at the beginning of period t for the expected demand for period ¢t + 7 at
the server, as follows:

i (T) = (24 £25)Sr — (14 25)ST

@

where:

St = ayr + (1 — OL)STfl
S = a8+ (1—a)SP

The « parameter is used to control how quickly recent demand observations
are incorporated in the prediction. In other words, « is the weight given to recent
observations in the prediction of future demand.

Our new online heuristic is a distributed greedy algorithm, which is executed
simultaneously and independently by each server. At the beginning of each re-
configuration period, each server independently decides whether it should locally
replicate any of the contents available in the system and whether it should remove
local replicas, based on the predictions of future local demand for the following
0 periods. More precisely, each server keeps track of the number of local client
requests to each content received during each period. It then uses the Double
Exponential Smoothing method to predict future local demand for each content.
The predictions are then used to estimate the total network traffic that would be
generated from replicating the content and maintaining the new replica, or from
simply maintaining the replica, if it already exists, for the following § periods.
It also estimates the total network traffic that would be generated during those
periods if it had to forward local client requests to the current closest replica.
The content is replicated in the server only if the estimated traffic incurred by
replication and future maintenance is lower than the estimated traffic incurred
by indirect request service. Similarly, the local replica is removed from the server
if the estimated maintenance traffic is higher than the estimated traffic caused
by indirect request service. In summary, each server independently makes a de-
cision that, at the time, minimizes its share of the total traffic generated for
serving its predicted future demand. The algorithm is shown in Algorithm [

Note that our algorithm takes a different approach from the previously pro-
posed ACDN dynamic content placement algorithm [14]. In particular, there are
four key points that distinguish them. First, the ACDN algorithm makes replica-
tion decisions based on the demand observed in the past, whereas our algorithm
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Algorithm 1 New Online Content Placement Algorithm for Wireless Networks

for V content ¢ € C' do {Executed by server ¢ € S at beginning of each period ¢t € T'}

fork=1,---,6 do

Je+r = Forecast_Local_Demand(c,i,t, k) {Use Double Exponential Smoothing

Method to forecast local demand for period ¢ + k in the future.}
end for
di° = Zi:l Utocalyy {Compute predicted local demand for the next § periods.}
{Let j be the server with the closest replica of content ¢ to server i.}
{Estimate total traffic over the backbone for indirect service in the next § periods.}
bi¢ = d*° x si° x dist; ;
{Estimate total traffic over the backbone for replicating content c in server i. }
bre = sr¢ x dist;,;
{Estimate total traffic over the backbone for maintaining new replica of content ¢
in server i. Flag m"* indicates whether content ¢ changes during period ¢.}
bm° = Zi:1 mtTFEe x sm® x disti,oc
if i does not have a replica of content ¢ then

if bi® > (br® + bm°) then

Add new replica of ¢ in server ¢

end if
else if 7 has the content ¢ and is not the origin server of ¢ then

if bi® < bm* then

Remove replica of ¢ from server ¢

end if

end if
end for

uses predictions of future demand, which in turn, are based on the evolution of
past demand. Second, the ACDN algorithm adopts a “push” strategy. In other
words, at each reconfiguration period, a server that currently has a replica de-
cides as to whether it should send it to other servers from which it received a
large number of indirect requests in the past. In contrast, our algorithm follows
a “pull” strategy. Third, the “push” approach makes an implementation of the
ACDN algorithm in space-constrained servers more difficult. The server that is
initiating a content replication operation should know whether the destination
server has enough local space to store the new replica. Finally, our online algo-
rithm is more efficient than the ACDN algorithm. Whereas our algorithm has
time complexity equals to O(|C), their algorithm has complexity O(|S| x |C]),
where |C| and |S| are the numbers of contents and servers in the system. A
quantitative performance comparison of both algorithms is left for future work.

4 Performance Evaluation

This section evaluates the performance of our new online dynamic content place-
ment algorithm, comparing it with the offline optimal solution and with the
previous centralized and distributed static placement approaches. Section KTl
briefly describes the mobility simulator used to evaluate the algorithms. The
most relevant performance results are presented in section B2l
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4.1 Mobility Simulator

The mobility simulation and demand generation are performed using a mobility
simulator developed in [I1]. The simulator models a twenty-kilometer radial city,
divided in area zones. The division is based on population density and natural
limits (e.g., rivers, highways, railway tracks). Taking mobile telecommunication
requirements into account, it seems reasonable to assume that each area zone is
equal to a network area (e.g., macrocell, local exchange area). The area zones are
connected via high-capacity routes, which represent the most frequently selected
streets for movement support, and are grouped into four area types: city center,
urban, suburban and rural. The simulator also includes a number of content
servers with fixed locations. Figure[l] shows a representation of the modeled city
with the server locations indicated by small dark circles. The city has 32 area
zones (eight per city area types), four peripheral routes (one per area type) and
four radial high-capacity routes.

The simulator models residences, workplaces, schools and other points such as
shopping centers and parks as movement attraction points, i.e., locations where
people spend considerable amounts of time. Figure [2 shows the frequencies of
different types of movement attraction points in each city area type.

The user population is divided into four mobile groups according to the
mobility characteristics of the individuals and to the demand they generate for
different content types. The four user groups are defined as follows: 5% of the
users are 24-hour delivery boys, 60% are common workers, 30% are housekeepers
and the remaining users are taxi drivers. The typical mobility behavior of each
user group is defined in a movement table. In this table, the day is divided into
time periods and a probability of a user of the group being at a certain location
is associated to each period. Typical movement tables are given in [TT]

Each user within a group generates a number of calls during simulation. The
per-user call inter-arrival times are exponentially distributed with means 14, 7,
14 and 18 minutes, for 24-hour delivery boys, common workers, housekeepers and
taxi drivers, respectively. Once connected, a user issues a number of requests at
rate 1 request per second. The number of requests issued by a user during a call
depends on the call duration, which is also exponentially distributed with mean
60 seconds, for all groups. Within each user group, relative content popularity
follows a Zipf-like distribution (Prob(request content ¢) = K/c¢*, where a > 0
and K is a normalizing constant [19]), with parameter o = 0.84.

4.2 Results

We evaluate the performance of the new online dynamic content placement al-
gorithm comparing it to two traditional static placement strategies: centralized
and distributed. In the centralized approach, each content is stored in only one
server in the network, whereas the distributed approach allows for each con-
tent to be replicated in a fixed number of servers. In both cases, the location
of the content replicas do not change over time, although the content may it-
self change, triggering maintenance operations, in case of multiple replicas. We
also compare our algorithm with the ideal lower-bound provided by the offline
optimal solution.
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In our simulations, we experiment with a distributed approach with 2 and
4 replica servers. Furthermore, in both centralized and distributed static ap-
proaches, the content replicas are placed in the more central servers (see Figure
[[). We make the assumption that the distance between two servers is the linear
distance shown in Figure [l Furthermore, unless otherwise stated, in all exper-
iments, we set the number of contents to 3 and the number of mobile users to
5000. The reconfiguration period is set to 10 minutes and the simulation runs for
90 periods. The a and & parameters of the demand forecasting method are set
to 0.2 and 7, respectively. We also make the conservative assumption that the
content modification rate is one per period, for all contents. Thus, maintenance
operations must be performed over the deployed content replicas at each period.

We run a large number of experiments varying several system parameters
and covering a large design space. The next sections present the most relevant
results obtained in our experiments.

Replication, Indirect Service, and Maintenance Content Sizes

This section analyzes the impact of the three content size parameters, namely,
the replication size (sr¢), the indirect service size (si¢) and the maintenance size
(sm®), which represent the number of bytes transferred in each specific operation.
Since the traffic generated in each operation is proportional to the number of
bytes transferred, the relative content sizes impact directly a server decision for
replicating a content or removing an existing replica and thus, the performance of
our algorithms. In the following experiments, we assume a baseline configuration
where sr¢ = si¢ = sm® = 1K Byte, for contents c € C.

We start by evaluating the impact of the replication size on the total network
traffic generated over the backbone if the indirect service and maintenance sizes
are fixed at the baseline value and the replication size increases to 20, 30, 40 and
50 times the baseline. Figure Bl shows the total traffic generated for the online
algorithm and offline optimal solution. For comparison purposes, it also shows
the traffic for the centralized and distributed static approaches. Note that the



Dynamic Content Placement for Mobile Content Distribution Networks 29

variation in the replication size has no impact on the static approaches. However,
as replication size increases, the replication component of the total traffic starts
to dominate. In response, the online and offline optimal approaches tend to
reduce the number of replications. As expected, the offline optimal solution,
having the knowledge of all future demand, makes replication decisions that
will lead to significant reductions in the future traffic, especially given the low
maintenance cost. On the other hand, the online algorithm uses predictions of
future demand for the following § period and thus, may make some sub-optimal
replication decisions which will not pay-off in the long run. Nevertheless, it is
interesting to note that in the worst case, for a replication size equal to 50 times
the baseline, the online algorithm produce a solution with total network traffic
which is only four times larger than the offline optimal. Furthermore, compared
to the best static approach (distributed with 4 servers), our online algorithm
reduces total network traffic in 78%, for a replication size equal to 20 times the
baseline, and in 21% for a replication size equal to 50 times the baseline.

Fixing the replication size at 50 times the baseline and the indirect service size
at the baseline, Figure[d shows the total traffic generated by each algorithm as the
maintenance size increases. Recall that we assume a content modification rate of
one per period, for every content. Thus, as maintenance size increases, it becomes
less cost-effective to maintain a replica in a server with low client demand. In this
scenario, total network traffic for the dynamic algorithms increases significantly.
However, the performance of the static distributed approaches degrades even
more significantly, especially for large number of replica servers, because fixed
location replicas must be maintained even during low demand periods.Compared
to deploying four fixed-location replica servers, our online algorithm reduces total
network traffic in up to 50%. In particular, for maintenance sizes larger than 20
times the baseline, the online dynamic algorithm chooses not to replicate any
content and, thus, performs similarly to the centralized approach. Furthermore,
our online algorithm results in an increase in the total traffic that is only 14%
higher than the offline optimal. If maintenance size is very large, both algorithms
decide for not replicating. Thus,the knowledge of future demand does not give
a significant advantage to the offline optimal.

Finally, we now fix both replication and maintenance sizes equal to 50 times
the baseline, and vary the indirect service size. Figure Bl shows the results. As
the content indirect service size increases, it becomes more cost-effective for a
server to replicate the content locally than to forward their client requests to
the closest replica. Thus, the dynamic algorithms generate significantly better
results than the static approaches. In particular, our online algorithm, which
produces solutions within 18% of the offline optimal, reduces the total network
traffic generated by the best static approach analyzed by up to 61%.

Number of Simultaneous Mobile Users

This section analyzes the impact of the number of simultaneous mobile users
simulated on the total network traffic generated over the backbone by our new
online and offline optimal solutions and by the traditional static centralized and
distributed approaches. We use homogeneous size configurations with all three
size parameters equal to 10 KBytes. Figure [6l shows that the dynamic content
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placement solutions scale much better with the number of concurrent mobile
users than the static approaches. With 500 thousand mobile users, the online
algorithm reduces total traffic in 75%, over static placement with 4 replicas.

Simulation Time

This section evaluates the increase in the cumulative network traffic as a function
of simulation time. As shown in Figure [ for a configuration with all three size
parameters equal to 10 KBytes and 2000 mobile users, the dynamic solutions
outperforms the static approaches significantly, as time progresses.

Traffic Overhead Due to Management Operations

Content replication and maintenance operations incur a management traffic over-
head, which must be payed off by a reduction in the traffic of indirect client re-
sponses in order to be beneficial to the system. Otherwise, total network traffic
increases and dynamic content placement may perform worse than static content
placement. Figure[§ shows, for each algorithm analyzed, the portion of the total
traffic due to management operations, for a configuration with all three size pa-
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rameters equal to 10 KBytes and 2000 mobile users. For the static approaches,
the management traffic, due to replica maintenance operations, is a tiny fraction
of the total traffic. The dynamic approaches reduce total traffic significantly by
performing replication and thus, have a higher management traffic overhead. In
particular, practically all the traffic generated in the offline optimal solution is
due to management operations. Thus, the replication decisions made are payed
off by significant reductions in indirect request service. The online dynamic al-
gorithm generates approximately the same management overhead, with a total
traffic that is only 126% higher than the offline optimal.

Forecasting Method

Finally, we evaluate the accuracy of the Double Exponential Smoothing fore-
casting method by comparing it with perfect forecasting, where the real client
demands for the future é periods are known a priori. We compare the perfor-
mance of the online algorithm using either method, for a configuration with 12000
users and replication, indirect service and maintenance sizes equal to 2MBytes,
20KBytes and 900KBytes, respectively. We run the simulator for 150 periods,
covering almost a whole day, and use ¢ equal to 7, for both methods. Figure
shows the total network traffic obtained as a function of the time of the simulated
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day. For comparison purposes, it also shows the results obtained with the offline
optimal solution. Perfect forecasting reduces total traffic in only up to 9.7%,
compared to the Double Exponential Smoothing method. Thus, this demand
forecasting method is highly accurate. Note that, as time goes by, the online al-
gorithm approximates to the offline optimal, being within 122% of optimal after
150 periods. Similar results were obtained with other values of 4.

5 Conclusions and Future Work

This papers proposed WDCDNM, a Wireless Dynamic Content Distribution
Network Model that takes both temporal and spatial variations in client de-
mand into account to dynamically replicate content with the goal of minimizing
total traffic over the backbone of wireless networks. Our WDCDNM decides to
replicate a certain content or remove an existing replica based on the solution
of a tradeoff between minimizing the total traffic generated by replication and
replica maintenance operations and minimizing the traffic resulting from indirect
request service.

We proposed and evaluated two implementations of WDCDNM: an offline
optimal solution and an online heuristic, based on demand forecasting. We used
a previously developed mobility simulator to evaluate the performance of our
solutions, contrasting it with the performance of previous static centralized and
distributed approaches. Compared to the best static approach, with 4 replica
servers, our online algorithm reduces total network traffic in up to 78%, produc-
ing solutions that are within four times the ideal offline optimal.

Directions for future work include introducing capacity constraints in WD-
CDNM, performing a quantitative comparison of our online solution and the
ACDN algorithm [14] and further optimizing the online dynamic placement al-
gorithm.
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