

bitcoins & blockchain

José A. Mañas < http://www.dit.upm.es/~pepe/> Information Technology Department Universidad Politécnica de Madrid

July 2018

index

1. bitcoins

dit ____

2. blockchain

paper money

• what is money?

- an amount
- signed by the issuer
- who is the owner?
 - the holder
- if you lose the paper the money goes to the finder

bitcoin

dit

• what is a crypto coin?

- an amount
- for an owner (address)
- signed by the previous owner
- who is the owner?
 - the one who knows the private key Ks that matches the verification key Kp
 - tech: hash(Kp) = address
 - that is, a proof of possesion
- if Ks is lost, there is no owner
- if P guesses Ks, P becomes the owner

value
address
signed by previous

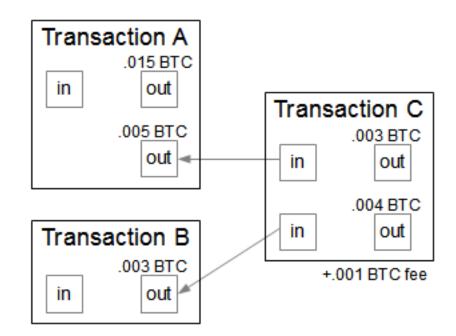
cryptography

- 256 bits elliptic curve
 - secp256k1

- y2 = x3 + 7 over Zp
- $p = 2^{256} 2^{32} 2^9 2^8 2^7 2^6 2^4 1$
- G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8

addresses

- A = ripemd160(sha256(public)) (160 bits)
- base58check encoding

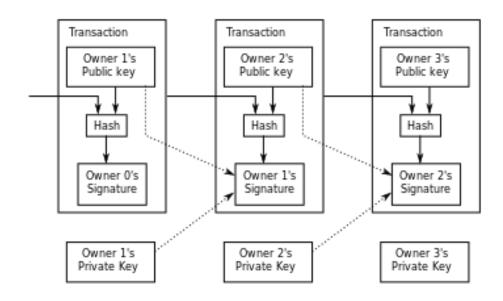

dit

• e.g. 174sG4urSK4zoqFw6T8AQwMuhLj6u2wL9W

https://en.bitcoin.it/wiki/Technical_background_of_version_1_Bitcoin_addresses

transaction

• change hands (that is, change address ownership)



https://bitcoinfees.21.co/

value moves from address(es) to address(es)

dit

proof of ownership: source signs

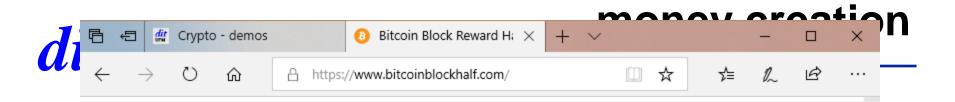
paper bitcoin

- for you to receive money, you need the owner to sign the transfer
- the owner can provide the signing key for you to transfer yourself

money creation

- out of nothing
- the network subsidizes blockchain maintenance
 - you build a block, you get some coins

Block #1148198


BlockHash 00000002acbbb3fee2ec8fd869a23a81261ce02c7ff638593297b9842d7e0a8

Transactions



money creation

- The number of Bitcoins generated per block starts at 50 and is halved every 210,000 blocks (about four years).
- 28.11.2012: 210.000 blocks: 50 BTC → 25 BTC
- 10.7.2016: 420.000 blocks: 25 BTC → 12.5 BTC
- expected: x.x.2020: 630.000 blocks: 12.5 BTC \rightarrow 6.25 BTC

Bitcoin Block Reward Halving Countdown

Reward-Drop ETA date: 26 May 2020 00:04:10

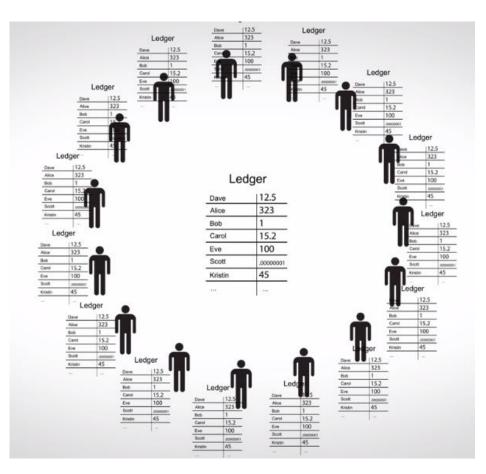
The Bitcoin block mining reward halves every 210,000 blocks, the coin reward will decrease from 12.5 to 6.25 coins.

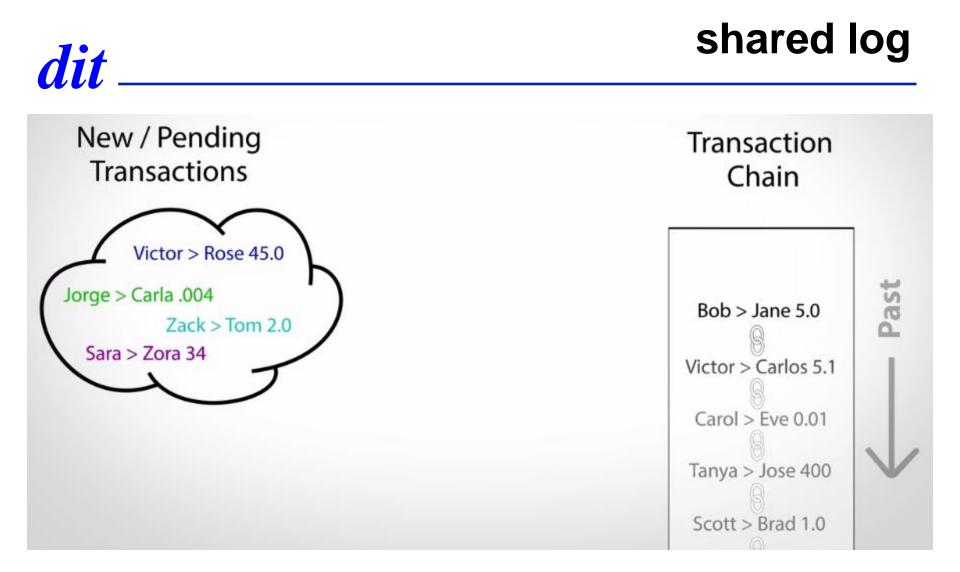
Total Bitcoins in circulation:	17,151,363
Total Bitcoins to ever be produced:	21,000,000
Percentage of total Bitcoins mined:	81.67%
Total Bitcoins left to mine:	3,848,638
Total Bitcoins left to mine until next blockhalf:	1,223,638

index

1. bitcoins

dit ____


2. blockchain

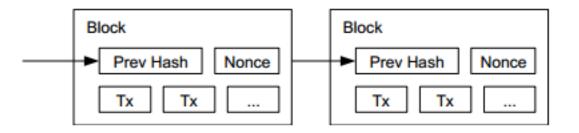

balance (ledger)

- how to know the money associated to an address now?
 - so nobody pays with others' money
 - so nowbody double spends
- traditional answer: universal balance
 - traditional bank with its superhost
 - the bank intermediates every transaction
 - the bank has all the movements, and the last word
 - I may have a local copy (e.g. excel)

distributed ledger

• everybody knows everbody's transactions

https://www.youtube.com/watch?v=l9jOJk30eQs

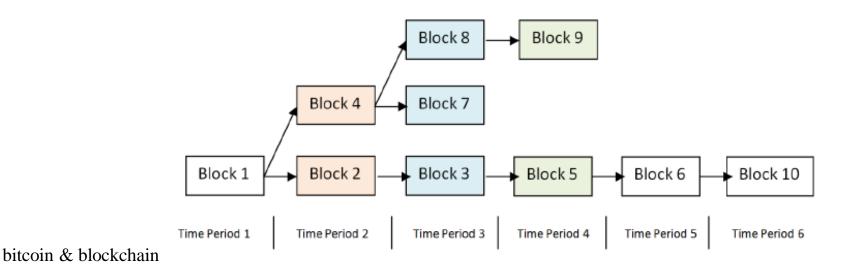

distributed ledger

• no central registry

- nobody is more than anybody else
- peer-to-peer: no central authority
- how do we get everyone to have the same record?
- how to deal with transmission delays?
- how to deal with liers?
- solution: blockchain
- there is no absolute guarantee; simply, it is highly unlikely that a lie lasts for long time
 - it is settled in < 10 min
 - you may be confident after ~60 min

linked blocks

- each block has a few transactions
- each block contains the hash of the previous one (linked)



- there is a starting block: The Genesis Block (hardcoded)
 - 1 transaction (3.1.2009)
 - https://en.bitcoin.it/wiki/Genesis_block

- anyone may generate a block (it is called a miner)
 - collecting fresh transactions (in order to receive the fees)
 - getting a reward for building the block

- and broadcasts the new block to be chained to the previous one
- two or more miners may build a new block before simultaneously (concurrency race) ...

http://blockchain.mit.edu/blockchain/

🔁 🖅 📙 4. Blockchain —	blockct × + ×				>
\leftrightarrow $ ightarrow$ $ m \rain$	i blockchain.mit.edu/blockchain/	□ ☆	r≞ l~	Ŕ	
4. BLOCK	CHAIN				
Block: # 1	Block: # 2	Block	# 3		
Nonce: 11316	Nonce: 35230	Nonce	e: 12937		
Data:	Data:	Data:			

Prev:

Hash:

Mine

000015783b764259d382017d9:

000012fa9b916eb9078f8d98a

Prev:

Hash:

dit

Prev:

Hash:

Mine

000015783b764259d382017d9

 \geq

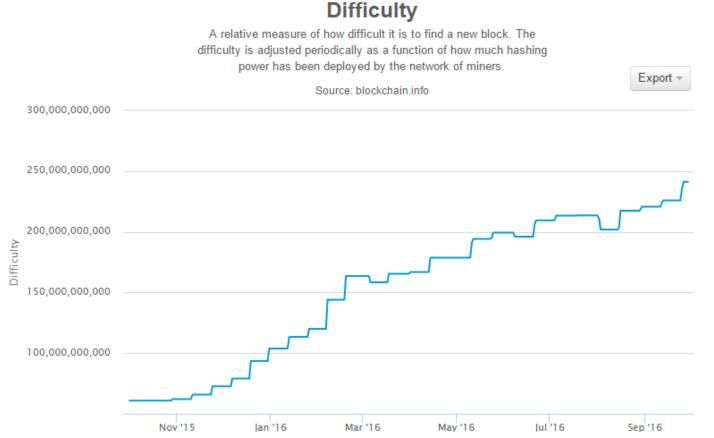
000012fa9b916eb90

0000b9015ce2a08b6

Mine

consensus

• proof of work


- a block is valid if its hash is above a given threshold
- the miner tries, and tries, until a valid hash is fund
- verification is simple and fast
- generation is tuned to require 10 min(on average) the threshold is revised reularly to adapt
- there may be 1, 2, 3, ... collisions, but as ther chain grows it is more and more difficult that two chains remain feasible
 - after 6 blocks in a row, it is assumed that there is no change for ther chain(s)
 - the winner means that we trust the longest chain

proof of work

• find X such that

dit

- bloque(X, transaction_list, previous_hash) > N
- N is evaluated every 2016 blocks (~14 days)

bitcoin & blockchain

51% attack

- dit
 - if one miner (or mining lobby) controls 51% os hash calculation power, it may overtake the others and take control of the chain
 - consensus is no longer a distributed matter
 - https://learncryptography.com/cryptocurrency/51-attack

index

1. bitcoins

dit ____

2. blockchain

usefulness

- bitcoin is a coin without a central authrity that fact rises strong opinions, in favor, against
 - banks are looking carefully what does it mean
- blockchain is a technology that provides a distributed ledger without a central authority
 - the ledger is provably secure
 - problems of centralized solutions are over
 - it applies to many scenarios where an agreed ledger is needed
 - it requires connectivity
 - it requires to hold the complete history

Partition tolerance is the ability of a distributed system to continue operating correctly even in the presence of a network partition.