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Abstract—Virtualization and emulation have become worthy ap-
proaches to save humongous amounts of money related to physical
resource acquisition expenditures. In this light, the development of net-
work emulation platforms has led a revolution in the research and testing
of novel services and applications, as they provide a cost-effective, flex-
ible and reproducible environment for experimentation. However, they
present some practical issues: particularly, their scalability is one of the
limiting factors as it links the emulated networks that can be successfully
deployed on a given hardware. We address this matter by testing the
consumption and exploitation of physical resources of one popular net-
work emulation platform, Mininet. We follow a methodology based on the
isolation of the threads associated to the Operating System, the virtual
hosts, and the monitoring tasks. In such a manner, this approach can
measure the effect of the placement of threads in the available cores,
and help optimizing bottlenecks that jeopardize the results of network
emulations. Additionally, we monitor several Key Performance Indicators
for general-purpose Mininet deployments in different network topologies
varying the number of active elements, links and network conditions
such as packet loss or delay. Our results show that Mininet presents
performance bounds in commodity servers that suffice a wide range
of general network tests. It achieves aggregated bandwidths above
10 Gb/s and median Round-Trip Time values around 1 ms, even in
demanding scenarios where more than a thousand hosts, up to 64-hop
paths and 64 subnets are included in the emulated topologies.

INTRODUCTION

OWADAYS, network operators and developers are

highly concerned about how to evaluate and test their
future deployments, services and architectures. Tradition-
ally, such tasks have been accomplished using network
simulators such as OMNeT++ or ns-3. Nonetheless, the de-
ployment of heterogeneous network elements, the emerging
technologies and the users’ behavior are usually beyond the
capabilities of simulations. Therefore, they fail to provide
results close to the real behavior of current networks, which
are more non-deterministic and complex [1].
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This emerging scenario has led network researchers to
the exploration of emulation platforms to surpass the limits
of network simulations. Using such platforms can improve
the experimentation and research in networking in terms of
reliability, flexibility, reproducibility and cost. In this line,
several tools have been developed to test and design future
network architectures and services, even to virtualize and
substitute physical infrastructures.

In this context, Mininet [2] has become one of the ref-
erence emulation tools, as it integrates several Software
Defined Networking (SDN) elements. Mininet, developed
at Stanford University, is an open-source, easy-to-deploy
and lightweight network emulator that provides a pro-
grammable interface to define and build network configura-
tions with virtualized elements. It is intended to alleviate the
cost of experimentation and to perform extensive network
testing by means of dedicated software. Hence, this system
opens the gate to reproducible network experiments [1] and
to risk-free experimental environments to test the function-
ality and performance of novel services [3].

Previous analysis of Mininet capabilities have mainly
focused on how it supports experimentation in specific
domains —e.g., the study of SDN deployments in [4], [5].
Moreover, behavioral differences among simulation, emula-
tion and physical deployments have been widely explored
in the literature —see for instance the results reported by
the main Mininet developers!, or those in [1], [6]. Those
works showed that the quality of the measurements in these
softwarized networks allows replacing the previous evaluation
and testing platforms —if slight divergences with respect to
physical deployments are admissible [7].

However, resource consumption and performance
degradations due to scheduling of execution threads have
not been extensively analyzed, despite the direct effect that
they can exert on experimental results —in fact, and to
the best of our knowledge, only some recent works have
considered the scalability of such platforms with focus on
SDN controllers, as shown in the comprehensive survey
in [8]. Thus, this work tries to shed light upon these matters
by evaluating the physical requirements and behavior of
Mininet during the emulation of network topologies in an
off-the-shelf physical server using different isolation strate-
gies for physical resources. Our evaluation considers a set
of scenarios that aims to provide an exhaustive character-
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ization of Mininet performance in terms of the number of
deployed elements (namely, switches and hosts) and link
characteristics (specifically, packet loss, delay and jitter),
to represent general emulation setups. Our evaluation also
takes into account general network Key Performance Indica-
tors (KPI), to assess the viability of up to 1500-hosts network
deployment emulations in a single physical server.

Such an approach lets us extract several insights into
the behavior of Mininet-based network emulations. On the
one hand, we evaluate how different thread placement
strategies (i.e.,, CPU isolation and affinity) and network
conditions (namely, packet loss and delay) shape the re-
source consumption, and which bottlenecks may appear
because of suboptimal policies. This analysis also reveals
which are the statistical main effects and interactions of
the number of hosts and switches in the resource con-
sumption —hence, showing the effect of varying them in-
dependently and simultaneously. On the other hand, we
introduce different generic network loads (namely, massive
data transmission, data encryption with VPN tunneling and
switching/routing) in controlled environments, to charac-
terize how they affect the overall achievable performance.
We believe that these results are useful for the early stages
of the design and deployment of tests in emulation envi-
ronments, hence potentially improving the research, testing
and innovation in the area.

To present our findings, we first analyze the architecture
and operation of Mininet to extract key guiding principles
for the setup of experiments. Then, we detail the experi-
mental design, with a complete description of both the set
of scenarios under test and hardware and software consid-
erations. After that, we thoroughly analyze the results, and
discuss their implications. Finally, we highlight the main
conclusions and point to future directions of this work.

INSIGHTS INTO MININET DEPLOYMENTS
Architecture and operation

In general, network emulation platforms encompass
three types of functional blocks: hosts, switching elements,
and links. Memory and CPU usage are of paramount
importance in emulation environments, given that virtual
elements make extensive use of such physical resources.
Consequently, most emulation platforms apply lightweight
virtualization approaches to represent network nodes and
improve scalability.

Specifically, Mininet uses Linux network namespaces to
emulate multiple network stacks inside a single physical
system, whereas other state-of-the-art proposals (such as
VNX2, CORE?® or IMUNES*) make use of other heavier con-
tainers —e.g., Docker or LXC (LinuX Containers). Regarding
switching elements, Mininet relies on the capabilities of
external tools such as Open vSwitch (OvS) or Indigo Virtual
Switch.

By default, Mininet uses OvS to transmit traffic between
the emulated hosts. OvS tasks are distributed among several
processes, which run both in kernel and user spaces. Specif-
ically, at kernel level several datapaths (similar to bridges)

2. http:/ /www.dit.upm.es/vnx
3. http://www.nrl.navy.mil/itd /ncs/products/core
4. http:/ /imunes.net

IEEE NETWORK

can be defined. Each datapath comprises a set of virtual
ports (vPorts) and a flow table. Such flow table is used to
forward incoming packets or execute specific actions (e.g.,
dropping a packet) based on their flow-tuples. When a
packet does not match any existent flow, it is forwarded
to a process executing in user space, which typically acts as
an OpenFlow controller and inserts a new flow defining the
behavior of the kernel datapath for such packet.

Since its first versions, Mininet provides a Python API°
which manages GNU/Linux cgroups to deploy and op-
erate all these network elements. This approach lets users
limit and assign certain physical resources to each network
element. However, if the existing physical resources are
insufficient, the achievable performance may be far from the
theoretical maximum [9].

Typical use cases, which comprise new protocols and ap-
plication testing and SDN controller development [10]-[12]
or Virtual Data Centers and Virtual Networks (VNs) [13],
impose requirements not only driven by CPU or memory
but also by available bandwidth, packet loss or delay. That
is, processes under test may require a baseline scenario
where both a minimum amount of bandwidth and a max-
imum delay are guaranteed to a large number of hosts,
rendering useless otherwise. Hence, the overhead of virtu-
alization and hardware bottlenecks during the scheduling
of execution threads must also be considered during the
evaluation of these platforms, to assure their suitability.

This operationalization exposes two capital matters for
the analysis of network emulation platforms. First, the
expected resource consumption of two different groups of
tasks —namely, Operating System (OS) and OvS tasks in
both kernel and user space, and Mininet threads, respec-
tively. Second, the degradation of maximum achievable
system performance because of the virtualization layers and
number of active elements.

Resource consumption and performance

With the aforementioned matters as starting point, we
state some expectable aspects about the resource consump-
tion and performance of Mininet deployments prior to the
experimental design of this study.

First, we have to consider how the intrinsic properties
of the network affect the consumption of resources. In
this sense, the evaluation must assert whether it depends
jointly on the number of hosts and switches in the network,
and how it grows when they are increased. Moreover, the
relation between this consumption and link characteristics
(i.e., packet loss, delay and jitter) is also a relevant issue, as
they result useful in many scopes.

Second, we focus on how can resource scheduling be
optimally adapted. In this light, we analyze if the expected
CPU loads exhibit different patterns between cores execut-
ing OS and OvS tasks, and cores executing Mininet specific
tasks taking into account their behavior when emulated
network characteristics change.

Finally, the degradation of the maximum achievable
system performance may prevent the successful exploitation
of Mininet in some scopes. Hence, we assess if, despite
of the sharing of resources, Mininet can provide expected

5. http:/ /mininet.org/api/annotated.html
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network performance baselines above the requirements for
the emulation of typical network deployments.

Regarding physical resource consumption, the first as-
pect aims to expose which factors can produce hard-
ware limitations when deploying network topologies in
Mininet with an increasing number of active elements [14]
and different link characteristics. On its part, the second one
is intended to detect how CPU usage differs among cores ex-
ecuting tasks in the previously distinguished groups. More-
over, given the heterogeneity of the possible applications
to be deployed in an emulated scenario, we propose the
evaluation of the physical resource utilization in a best-case
situation, with low activity in the virtual hosts. The last as-
pect focuses on the achievable network performance when
using Mininet. We have selected as illustrative network KPIs
the Bulk Transfer Capacity (BTC) and the Round Trip Time
(RTT), to evaluate possible burdens in emulations with
thousands of hosts. Interestingly, these network KPIs are
upper bounded by the maximum system performance, so
this approach exposes its degradation due to virtualization
and addition of active network elements.

EXPERIMENTAL DESIGN

Keeping in mind the aspects above, we have envisaged
an experimental design, which aims to obtain a comprehen-
sive characterization while preventing bias from specifici-
ties. To do so, our design is rooted on (i) low network load
during the resource consumption tests; (ii) complete avail-
ability of resources for network emulation during the perfor-
mance tests; and (iii) basic topological structures for virtual
networks. Although this may seem somehow optimistic,
these conditions allow the extraction of general figures and
trends with minimal affection of specific applications and
spurious interactions with uncontrollable factors. To present
its details, we first describe the scenarios under test, and
then we elaborate on the hardware and software setup of
the system.

Scenarios

We defined the set of scenarios in Figure 1 to measure
resource consumption and analyze the operating point of
Mininet in terms of intrinsic characteristics of the Virtual
Networks (VN):

e VN; consists of N hosts connected through M
switches. Hence, it is a multi-level tree topology
where leaves contain hosts connected by different
switches in a layered mode —i.e., only switches 1
and M are connected to end hosts. When M = 1,
this scenario corresponds to a single star topology,
typical in simple data center architectures or LANSs.

e VNj represents a common architecture to provide
dedicated IPSec tunnels to N hosts. V Ny is quite
similar to VN7 with M = 1, but it includes an IPSec
server between the hosts and the external network
access (C).

e VN3 is composed of M different subnets connected
through a core switch. Each subnet contains [V hosts.
In this scenario, OpenFlow rules (based on packet
destination subnet) are installed in switches S; to
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Figure 1. Diagram of the virtual networks considered in our
experiments.

S and in the core switch to provide a routing alike
behavior. This scenario reflects emulations of large
enterprises and small ISPs, and data centers where
hosts in the same rack are connected by a Top-of-
Rack (ToR) switch and the next levels encompass
switches that interconnect different racks.

V' N; aims to evaluate the effects of the number of active
elements for VNs deployed in a physical server. V. N, is
used to characterize performance degradation when data
is not only switched but also encrypted —thus, exploring
performance when more sophisticated tasks are executed
in the emulated scenario. V N3 is designed to evaluate the
impact of OpenFlow rules on the network performance
when the number of subnets varies —the total number of
hosts is kept constant, and they are distributed uniformly
across subnets in each trial to prevent spurious effects.

We used OpenFlow rules to discard possible effects re-
lated to the implementation of third-party elements. Such
rules are installed with the ovs-ofctl command at topol-
ogy start-up time, so they are not modified during the ex-
periment. For the sake of simplicity and to avoid emulating
ARP proxies, ARP tables are statically configured on each
host.



4
Hardware and software setup

We have executed all the experiments in a commod-
ity server with two Intel Xeon E5-2620 v2 processors (6
cores per processor) running at 2.10 GHz without Hyper-
Threading, and 32 GB of RAM. The server ran Ubuntu
14.04.1 with a Linux kernel 4.4.0-45. We used Mininet 2.2.2°
with its default configuration. We deployed the previously
described scenarios using the Python API that this version
provides, and we configured the network elements to cus-
tomize their pinning to physical cores with the options in
the APL

We used isolcpus’ kernel parameter to isolate
OS/OvS threads from Mininet and resource consumption
monitoring threads, minimizing their mutual interaction
when characterizing the system load. Additionally, we used
the taskset® Linux command to pin threads manually to
specific cores. We assessed that there is no significant load
when experiments are off (namely, less than a 5%), thus
providing a good estimation of the CPU load related to OvS
and Mininet activities.

To characterize the physical resource consumption, we
monitored the system during several deployments of VIV,
with variable numbers of both hosts and switches and
different link configurations —packet loss, delay and jitter.
The number of both hosts and switches spanned from 4 to
1024. Packet loss was varied to obtain an end-to-end rate
ranging from 0 to 10%, and delay was configured to three
different average levels (0, 50 and 75 ms) and two values
of jitter —0 and 10 ms. Link configuration relied on the
available options in the API of Mininet, which uses tc and
neten’.

In each trial, ping was executed 15 seconds while re-
trieving CPU and memory usage statistics —2 samples per
second, using /proc/stat and free command to gather
CPU and memory measurements, respectively. Each exper-
iment was repeated 50 times, providing averaged results
with their standard errors —this provides an idea of the
deviation of the sample mean with respect to the popula-
tion mean, thus quantifying the convergence to the actual
expected system behavior.

Regarding the CPU usage, we analyzed two different
placement strategies for OS/OvS threads —i.e., pinning ex-
ecution threads to specific isolated cores. In the first one, we
isolated all physical cores except the first one, as some OS
threads are statically bound to that core. In such core, both
OS and OvS tasks are executed. Regarding the remaining
cores, 6 out of 11 are used to distribute Mininet tasks uni-
formly. CPU and memory monitoring processes are sched-
uled to be executed in the remaining unused cores to avoid
interference. In the second strategy, we isolated all physical
cores except the two first, which are used by OS and OvS.
The remaining cores are assigned as in the first strategy.
These two scheduling configurations illustrate how OvS
scales with the number of available cores.

6. git:/ / github.com/mininet/mininet

7. https:/ /wiki.linuxfoundation.org/realtime /documentation/
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8. https:/ /wiki.linuxfoundation.org/realtime/documentation/
howto/tools/cpu-partitioning / taskset

9. https:/ /wikilinuxfoundation.org/networking /netem
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We also assessed the RTT and the BTC to evaluate
the network performance. First, we conducted throughput
measurements with TCP by running iperf in VNj, to
link the degradation of the system maximum performance
with respect to topology size. TCP provides enhanced per-
formance results in this setup due to the use of Super
Jumbo Frames (SJF) [15] and TCP offloading mechanisms
that allow sending IP datagrams of up to 65535 bytes —
such behavior is observed by default when running mea-
surement tools such as iper£'. After these measurements,
we evaluated RTT with ping when traffic is not only
forwarded among hosts, but also transformed. To do so,
we established IPSec dedicated tunnels in V' Ny using the
Linux utility strongswan''. In VN3 we performed both
bandwidth and RTT measurements as in the other virtual
networks and varying the number of subnets. For all these
tests, we assessed again that the idle system load was below
5% and without core isolation to maximize the utilization
of the server. Additionally, we considered the default TCP
parameters —window sizes of 85.3 KBytes and 2.5 MBytes
for server and client, respectively.

ANALYSIS OF RESULTS
Topology size and resource consumption

Figures 2 and 3 present the measured free CPU and
memory, respectively —i.e., the available resources for other
applications in the physical host. Each graph represents the
complementary of the average observed utilization with
standard errors as error bars. The number of switches is
included as independent variable, while each colored line
with markers corresponds to a different number of hosts.
The black line with no markers corresponds to the aver-
aged results without partitioning the results by number of
hosts. This representation allows a qualitative analysis of the
effect of jointly adding hosts and switches in the resource
consumption of Mininet-based deployments. Regarding the
presented data, figures 2a and 2b are obtained with the
first placement strategy (only one core available for OS/OvS
tasks), whereas figures 2c and 2d include the measurements
with the second one —two cores available for OS/OvS tasks.

The scalability of OS and OvS threads is assessed by
comparing figures 2a and 2c. Remarkably, even in a con-
text without heavy activity in the active elements, a single
core cannot cope with traffic forwarding if the number
of switches is greater than 512. On the counterpart, the
assignment of an additional core is sufficient to support the
activity of deployments with 1024 switches and 1024 hosts.
In both cases, the main effect of the number of switches
turns up as the dominant factor as the number of hosts only
produces remarkable effects for less than 512 switches.

On the other hand, figures 2b and 2d show that the
number of hosts produces the statistical dominant effect in
the resource consumption of Mininet processes —e.g., see
the almost constant percentage of idle CPU when varying
the number of switches with 4 hosts. Additionally, the
interaction of hosts and switches is only relevant for more
than 512 switches, as exposed in Figure 2d. However, this

10. https:/ /linux.die.net/man/1/iperf
11. https:/ /www.strongswan.org/
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Figure 2. Percentages (mean and standard error) of idle CPU varying the number active elements in V' IV, and the number
of CPUs assigned to each task with two different thread placement strategies. Black line with no markers is the average

aggregating all number of hosts.

effect is less noticeable in Figure 2b because the core running
OS/OvS threads is fully saturated, producing bottlenecks
that distort the behavior in these latter cores.

Unsurprisingly, the memory consumption does not de-
pend on the task scheduling strategies nor the number of
used cores. Figure 3 presents the changes in the memory
footprint for each scenario, and confirms that both the main
and interaction effects of the number of hosts and switches
are significant to explain the memory consumption.

Link characteristics and resource consumption

Once we have characterized how physical resource con-
sumption is tied to the topology size, we focus on how
link conditions affect the hardware requirements. The re-
sults, using the second placement strategy are presented
in Figure 4. In this case, we only considered the second
placement strategy, as the previous results exposed that the
first one does not suffice to deploy all the topologies without
saturating the system.

Figure 4 simultaneously displays series of boxplots to
characterize the overall behavior regarding each level of
packet loss or delay, hence providing an idea of the dis-
tribution of values. Additionally, it also includes the mean
value for the groups defined in terms of active elements as
dots, which color and size indicate the number of hosts and
switches respectively —we added small fluctuations to the
independent variable, to reduce overlapping and improve
visualization.

In figures 4a and 4b we assess how CPU utiliza-
tion varied depending on the percentage of lost packets
for cores executing OS/OvS tasks, and those devoted to
Mininet threads. Both groups exhibited similar affection by
the introduction of packet loss, with an increased overall
idle percentage and higher variability.

On the other side, the measurements with additional
delay and jitter included in figures 4c and 4d showed higher
levels of CPU utilization, as well as higher variability.
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Figure 3. Free memory (mean and standard error) when
varying the number of active elements in V N;. Black line
with no markers is the average aggregating all number of
hosts.

Finally, memory consumption presented similar trends,
with low affection related to packet loss and higher foot-
prints in the case of additional delay.

This behavior is not surprising. On the one hand, packet
loss entails less packets to be processed and forwarded both
at the switching elements and at receiver hosts. On the other
hand, higher delay and jitter leads to the same amount of
packets to be processed but (i) with additional processing in
the links introducing thus delay and (ii) demanding more
processing time in the sender side of the ping probes.

Network performance

First, we conducted experiments varying the number
of hosts from 10 to 1500 in V. N;. To obtain the upper
boundary for the achievable bandwidth, we first defined a
simple scenario with two hosts directly connected through
a switch and one iperf process running. The result of such
experiment provided the upper bound of the achievable
aggregated bandwidth, which in our case is located near
50 Gb/s —similar to the average best case reported by the
mbw'? tool for memory bandwidth measurement.

To cover all possible client-server distribution cases, for
each number of hosts (IV), we vary the number of servers
from 1 to N while keeping the number of clients constant to
N. Figure 5a shows the boxplot representation of bandwidth
reported by iperf servers —30 samples each, one per sec-
ond of the experiment. Remarkably, the median achievable
bandwidth decreases as the number of hosts increases. The
measurements exposed that several hosts stop transmitting
during short time periods when the number of hosts is
large, due to the congestion of the shared links and to
synchronization issues in the scheduling of processes. These
facts also explain both the increasing overall variance and
dispersion of outliers when the number of hosts grows
above a certain threshold —see the trends in the case of

12. http:/ /manpages.ubuntu.com/manpages/trusty /manl/mbw.1.
html
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100 hosts. The median is located near 15 Gb/s of aggregated
BTC in the worst-case scenario (1500 hosts), which is a fairly
good result.

After that, we evaluated how the number of switches
affects the achievable bandwidth. In this case, the number
of hosts (N) remained constant at 100 while we perform
iperf measurements varying the number of switches. Fig-
ure 5b includes the boxplots of the achievable bandwidth
in V.N; when varying the number of switches. Observing
the results, we can state that adding up to 10 switches to
our topology does not significantly modify the achievable
bandwidth, which median value remains stable near 22-
23 Gb/s of aggregated BTC.

Next, we analyzed the variation of RTTs when adding
hosts to V' IN3. All the hosts were connected to C' using an
IPSec tunnel through an intermediate IPSec server to pro-
vide a more complex scenario. The median RTT is located
below 1 ms for 1000 or fewer hosts, and in the case of 1500
hosts, it is near 1 ms. Even in this latter scenario, the samples
above 100 ms represent less than a 2% of the measurements,
and packet losses were not observed.

To conclude, we evaluated the impact of adding Open-
Flow rules on switches, both for the aggregated bandwidth
and RTT values. Figure 6 includes the measurements of
those KPIs in deployments of V N3 with 1024 hosts. Regard-
ing aggregated bandwidth, the trends tied to the number
of subnets show performance improvements because of the
trade-off among the number of subnets and their size. On
the other hand, RTT increases with the number of subnets
with maximum values around 1 ms.

KEY REMARKS AND DISCUSSION

The aforementioned results expose several practical is-
sues that users of Mininet should take into account:

e The main and interaction statistical effects of net-
work elements as explanatory variables for CPU
load show that utilization differs between the cores
dedicated to the OS/OvS threads, and those isolated
for Mininet tasks in the absence of computationally-
intensive processes. Additionally, there are signifi-
cant relations between the CPU load in both groups
when the cores devoted to the OS/OvS are saturated.

e The median aggregated bandwidth is above the 50%
of memory maximum bandwidth. Those figures pro-
vide an estimation of the bandwidth for the flows
that are generated from each host.

o High latency values are rarely reported. This enables
the use of sophisticated middleboxes beyond simple
switching/routing elements, without significant net-
work performance degradation.

Consequently, we can define a set of rules to improve the
results of Mininet-based experimentation:

o CPU affinity and isolation should be carefully tuned
to prevent artificial bottlenecks.

e Network performance is tied to memory bandwidth
and scheduling of processes. Therefore, baseline
measurements must be accomplished to prevent bi-
ases by system overloads, taking into account the
significant factors and interactions extracted above.
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network size (i.e., hosts and switches) are presented with dots.

e Delay and jitter affect physical resource consump-
tion, so they must be considered in the hardware
requirements. On its part, packet loss exhibits an
almost negligible effect.

Our characterization of the resource consumption and
network performance of Mininet provides a basis for the
deployment of more complex and realistic networking sce-
narios. We believe that our results can help researchers to
test network deployments in a more cost-effective man-
ner. Specifically, Mininet-based experimentation solves key
problems of physical testbeds (by reducing the expendi-
tures in hardware, energy consumption and operation) and
minimizes the risk of failure or anonymity constraints that
appear when testing real software and implementations in
actual networks.

CONCLUSIONS

We have presented a characterization of the limiting
factors and possible bottlenecks for Mininet deployments.
We have assessed the performance of this tool for general
network emulations with up to 1500 hosts by controlling
the different network elements involved in each particular
scenario and forcing the pinning of threads to specific iso-
lated cores.

With such a methodology, we have studied the phys-
ical requirements (i.e., CPU usage, number of cores, and
memory consumption) distinguishing among OS/OvS and
Mininet tasks while varying the principal network elements
(namely, hosts, switching elements and subnets) and condi-
tions —delay and packet loss.

Our experiments also covered the behavior of aggre-
gated bandwidth and RTT, which presented baseline me-
dian values around 15 Gb/s and near 1 ms, respectively.
Furthermore, aggregated bandwidth values below 10 Gb/s
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Figure 5. Bandwidth characterization in V' V;.

and RTT values above 100 ms are rarely reported, which
proves that Mininet is a robust platform to perform a wide
range of network experiments and tests.

Finally, the scripts to accomplish the experiments in
this paper are open as complementary material to extend
the tutorial nature of this work.!®> With this, we provide
researchers and practitioners with a set of results and tools
to decide if Mininet suits their requirements when carrying
out network experiments.

While we believe that these results are worthwhile to
report themselves, we envision some future directions of
this work. We point to the evaluation of distributed Mininet-
based deployments and other network emulation and vir-
tualization platforms such as the aforementioned ones, to
compare them quantitatively. Additionally, performance as-
pects beyond network operations (e.g., hard disk access
performance degradation) should be studied to completely
characterize Mininet behavior for other use cases.
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